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Performance of System on 
Twitter trace workload
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Evaluations and Discussion

Proposed Approach

Challenges and Motivation

Quality-Aware Prompt Scheduling for Efficient 
Text-to-Image Inference Serving

Adobe Research
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Overview of the scheduler

Text-to-image services

Multiple use-cases

Large scale systems
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Technical Challenges:

Use-case Challenges:

Diffusion: Iterative Denoising Process
 

• High Load Overheads due 
to Model Switching

• Quality is determined by 
Prompt-Model Synergy

• Getting more Servers is 
Costly and Unpredictable

Accuracy Scaling[2]

Horizontal Scaling

Shubham Agarwal*, Saud Iqbal, Subrata Mitra
(Adobe Research, India)

Approximate-Caching[1] accelerates generation

Uses intermediate noises from past 
generations for skipping initial steps

Loads completely 
different model variants

Prompt–to-model affinity
 is unknown and not used

Same model runs at 
different approximation

Similarity with past prompt  
decides approximation level
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Overall Goals

[1] Shubham Agarwal et al. Approximate caching for 

efficiently serving diffusion models. (NSDI 2024)
[2] Sohaib Ahmad et al. Proteus: A high-throughput 
inference-serving system with accuracy scaling. 
[3] Zijie J Wang et al. Diffusiondb: A large-scale 
prompt gallery dataset for text-to-image models.

1. Determines the number of model instances and 
their respective K values for given load

2. Calculates the fraction of the input load allocated to 
each instance at a macro-level.

3. Uses heuristic to assign prompts to models with 
Optimal K-values at a micro-level.

4. Redirects prompts to models at different K' for load 
balancing while preserving quality.

5. Uses a tailored Route-and-Batch technique.

1. Real-Time Needs vs. 
Time-Intensive Process
2.High Costs of GPU 
Infrastructure
3. Load Fluctuations with 
High Peak Loads

HOW IT WORKS?

Evaluation set-up

• SD-XL models with steps
K ∈ 0, 5, 10, 15, 20, 25 .

• Cluster of 8 A100 GPUs.
• Twitter production and 

synthetic workloads traces.
• Real user prompts from 

DiffusionDB[3].

Discussion

1. Improves the generation quality, 
even under high load.

2. Uses a novel algorithm to 
optimally match the prompts to 
approx. cache model variants.

3. Future focus: Expanding to other 
model families.

4. Leveraging heterogeneous 
serving environments.

Results

Maintains >90% quality and 
<5% SLO violations with 
prompt-aware approx. 
variant selection.

Eliminates model loading and 
unloading  overhead.

- Uses approx. caching[2] to adjust 
model’s latency and accuracy for 
varying loads

Achieves up to 10% 
higher quality, 40% higher 
throughput, and 10X lower 
latency SLO-violations.

Baselines face SLO violations 
and quality loss due to 
prompt-agnostic routing 
and loading overheads. 

Consciously aligns each prompt 
with the most suitable model.

- Micromanages prompt-to-model 
allocation to maintain image quality 
under varying loads
 

WHAT IT DOES?

Query Dispatcher

• Optimal-K Selector finds nearest 
cache, determines optimal K.

• K-to-K’ Router selects final K’ 
model based on Route-Plan.

• Route-and-batch module adjusts 
routing based on load.

Resource Controller

• Model Cache Assigner distributes 
models across different K.

• Query Fraction Solver calculates 
proportion of prompts to K.

• Optimal-K Predictor forecasts 
optimal-K distribution for queries.

• K-to-K’ Route Planner established 
redirection probabilities.

* pre-doctoral researcher
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